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Abstract-A simple rate-independent phenomenological constitutive model is developed for par
ticulate composites undergoing damage. The constitutive model is motivated by the results of a
micromechanical model based on Eshelby's equivalent inclusion analysis and Mori-Tanaka's
method for an elastic composite undergoing damage either by debonding or cavity formation. The
micromechanical model is used to illustrate the behavior of a composite consisting of hard particles
reinforcing a soft, nearly incompressible elastic matrix. The composite is assumed to behave linearly
elastic in the absence of any damage. The damage accumulation is described by a single scalar
internal variable, the maximum volume dilatation attained during the deformation process. Two
damage functions govern the degradation of the bulk and the shear moduli in the phenomenological
constitutive model. Corresponding computational algorithmic tangent moduli is derived and exam
ples are provided to illustrate the versatility of the proposed model.

I. INTRODUCTION

Particle reinforced composites are widely used for attaining increased modulus, strength or
toughness depending on the application. Such composites exhibit non-linear constitutive
response due to various factors such as damage (debonding, cavity or vacuole formation,
cracking), hysteresis during loading-unloading (Mullins effect), viscoelasticity (time-depen
dence: rate, material, damage, environment) and large strains (geometric). Such non-linear
behavior is observed extensively in filled polymer or rubber products such as toughened
plastics, tires, solid propellants and others. A number of studies have been performed to
address one or more of the issues contributing to the non-linear behavior of these composites
[see for examples Farris and Schapery (1973); Schapery (1982,1991); Govindjee and Sima
(1992)]. In this paper, we address the effect of damage by dewetting or cavity formation on
the behavior of particle reinforced elastic composites.

Schematics of a two phase particulate composite and the possible damage modes when
subjected to remote loading are shown in Fig. 1(a-<::). We assume the particles to be
spherical in shape and, under straining, damage occurs either by debonding as shown in
Fig. 1(b) and/or by cavity or vacuole formation as shown in Fig. 1(c). Upon loading, at a
critical strain level, the particles separate from the matrix causing dewetting. This introduces
volume dilatation and results in non-linearity in the stress-strain behavior. However, for
well bonded particles, cavities and cracks may form entirely within the matrix [see Cornwell
and Schapery (1975)]. A typical uniaxial engineering (nominal) stress-strain curve and the
corresponding volume dilatation for an elastic particulate composite (solid propellant) are
shown in Fig. 2. The stress-strain response is nearly linear when there is little or no volume
dilatation and the non-linearity sets in once the dilatation becomes significant. The uniaxial
response and the accompanying volume dilatation of particulate composites have been
investigated by a number of researchers [see for example Farris (1968) ; Farris and Schapery
(1973); Knauss et al. (1973); Schapery (1982, 1987, 1991); Anderson and Farris (1988)].
It has been observed by Farris (1968) and Schapery (1987) that the stress-strain response
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Fig. I. Schematic of a particle reinforced composite subjected to uniaxial tension: (a) undamaged;
(b) damage by dewetting (debonding) at the apex; (c) damage by cavity formation.

of particulate reinforced composites undergoing damage can be related to the constitutive
response of the undamaged composite and the corresponding volume dilatation. It has also
been observed that the volume dilatation is a function of the hydrostatic pressure and
Schapery (1987, 1991) used a pressure-volume work term to account for the non-linearity
in the stress-strain curve. Though a number of models have been available for modeling
the uniaxial response of particulate composites, there are relatively few models which
generalize to multi-dimensions and which could be effectively used in the engineering
analysis and design of structures made of such materials. The models proposed by Schapery
(1987, 1991), Simo (1987) and Anderson and Farris (1988) contain many aspects that can
be used in multi-dimensional stress analysis. In our present study, we propose a simple,
phenomenological, homogenized, rate-independent, constitutive model based on a single
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Fig. 2. Uniaxial tensile response ofan elastic particulate composite undergoing damage by dewetting.
Stress-strain response and dilatation as a function of strain are shown.
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scalar internal variable to model particulate composites undergoing damage under gen
eralized strain states.

In Section 2, we summarize the results from a micromechanical model based on Mori
Tanaka's method and Eshelby's equivalent inclusion analysis for an elastic composite
undergoing damage either by debonding or cavity formation. Results are presented for
degradation of the effective bulk and shear moduli of the composite. In Section 3, based
on our observations from micromechanics and principles ofcontinuum damage mechanics,
we propose a phenomenological model to generalize the observed uniaxial response to three
dimensions using a scalar parameter to govern damage evolution. The response of the
undamaged composite is assumed to be governed by the classical Hooke's law. The bulk
and shear moduli of the composite undergo degradation with accumulation of damage.
The computational algorithmic tangent moduli for the damaged composite is derived and
examples are provided to illustrate the constitutive model. In the proposed model, we have
neglected the time-dependent (viscoelastic) and the finite (large) strain aspects of the
problem which are of importance in studying certain classes of particulate composites such
as filled elastomers. We will address the modifications to the present model which are
necessary to account for the above mentioned effects in Section 4.

2. MICROMECHANICAL MODEL

When particulate composites are subjected to tensile loading, several different damage
modes are possible depending on the characteristics of the interface between the matrix and
the particle. We assume that the particles are spherical in shape and that under straining,
damage occurs by debonding as shown in Fig. I(b). These damage modes result in degra
dation of the elastic moduli of the composite materials [see for example Schapery (1986,
1991); Anderson and Farris (1988); Mochida et al. (1991); Tong and Ravichandran
(1994)]. Of particular interest is the debonding (dewetting) between the particles and the
matrix which could eventually lead to the formation of cavities (vacuole) as shown in Fig.
l(c).

Anderson and Farris (1988) and Vratsanos and Farris (1993) have presented a model
where the debonding between the matrix and reinforcement has been accounted for by
placing equivalent voids in the microstructure [Fig. I (c)] and gradually increasing the
volume fraction of voids. They used the differential scheme [see for example Christensen
(1990)] to study the uniaxial response of such particulate composites by numerical inte
gration. A micromechanical model developed by Schapery (1986, 1991) introduced the
"two crack" model for studying the response of two phase particulate composites which
undergo damage by dewetting at the apex of the spherical particles. The results from
effective medium theories could be used to interpret the experimental results to obtain the
bulk and shear compliances, as well as the fraction of debonded particles as a function of
deformation history. In the present paper, we make use of observations from micro
mechanics to formulate a simple homogenized phenomenological constitutive model for
particulate composites undergoing damage.

2.1. Effective moduli
We make use of the results from effective medium theories to predict the homogenized

response of composites (consisting of an elastic matrix reinforced with elastic particles)
while undergoing damage. In the present study, we make use of the results in closed form
based on Eshelby's inclusion problem and Mori-Tanaka's method to account for the
degradation of the moduli. By using the micromechanical results, one can study the effect
of damage on the elastic moduli of the composite. We summarize the results used by
Mochida et al. (1991) for the Young's modulus (E) and by Tong and Ravichandran (1994)
for the bulk modulus (K) of the composite undergoing damage either by debonding or void
formation,

and

E I

Em 1+l1p (1- fd)fo +1JdJdo
(1)
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Fig. 3. Degradation of the bulk (K) and the shear (p) moduli as a function ofthe fraction ofdamaged
particles (I.) as predicted by the micromechanical model. The moduli are normalized with respect

to the corresponding effective moduli of the undamaged composite.

K I

Km I +31h (1 - .fct) fo + 311v.fcdo
(2)

where Em and Kmare the Young's and the bulk moduli of the matrix, respectively;/o is the
volume fraction of the total particle reinforcements, fd is the fraction of the damaged
particles in terms of fraction of the total particles. l1p , l1d, 11k and l1v are functions of volume
fractions (/OJd) and elastic moduli of the matrix (Em and Km) and the reinforcing particle
(Ep and Kp) [see Mochida et al. (1991); Tong and Ravichandran (1994)]. These factors
differ depending on the mode ofdamage used, i.e. debonding vs cavity formation [Fig. I(b)
and (c)]. Once the Young's and the bulk moduli of the composite are known, one can
compute an effective shear modulus (11) and an effective Poisson's ratio (v) for the composite
by using standard elasticity relations,

3KE
11 = (9K-E) and

(3K-E)
V=

6K
(3a,b)

The effective moduli of the undamaged composite can be studied by setting.fct = 0 in
(1) and (2). Of particular interest in dealing with polymer matrix composites is the effect
of hard particles reinforcing a nearly incompressible soft matrix, i.e. Em (matrix)« Ep

(particle). For illustrative purposes, the following material properties were used for the
matrix and the particle reinforcement, Em = I MPa, Vm = 0.499 and Ep = 70 GPa and
vp = 0.33. Using (3b), it is observed that the effective Poisson's ratio of the composite is
dominated by that of the matrix and is close to that of the matrix for most practical values
of the reinforcement. The results for effective properties of the undamaged composite
obtained here coincide with the predictions by Hashin (1962). The normalized Young
modulus for the composite (E/Em) is nearly equal to that of the normalized shear modulus
(Il/Ilm). These results are nearly identical for all practical values of Em (0.1-10 MPa) and Ep

(1-70 GPa) that are encountered in rubbery particulate composites.

2.2. Degradation ofmoduli with damage
To illustrate the effect of damage on the effective moduli, a composite with a large

volume fraction of particles is chosen. Figure 3 shows the normalized effective bulk (K) and
effective shear (11) moduli for to = 0.7, i.e. 70% by volume of particles and the modulus
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and the Poisson's ratio values cited in Section 2.1 are used for the matrix and the reinforce
ment. The effective (homogenized) moduli are normalized by the respective modulus value
of the composite with no damage, i.e. Ko and J10. In our present study, Ko = 3.34 K m and
J10 = 6.83 J1m' The bulk modulus K undergoes a drastic degradation (nearly two orders of
magnitude) at very low levels of damage (fd < 0.05) and continues to decrease with further
dewetting but much more gradually. On the other hand the shear modulus (J1) degrades
much more gradually with increasing damage. The shear modulus for the void case [Fig.
1(c)] is lower but very close to that of the partially debonded case [Fig. l(b)]. The dramatic
degradation of the bulk modulus upon the onset of damage can be attributed to the nearly
incompressible nature of the matrix and the volume dilatation introduced by the onset of
damage. It is evident that the effective shear modulus is not significantly affected by the
specific assumption made regarding the nature ofdamage, i.e. debonding vs void formation.
This is once again the consequence of near incompressibility of the matrix.

In our analysis, we have used the closed form results based on Eshelby's inclusion and
Mori-Tanaka's back stress analysis to obtain the homogenized moduli for the composite
undergoing damage. These results may not be accurate especially at very large volume
fractions as the ones considered here and in the near incompressible range. However, one
can improve these results by adopting other techniques such as the generalized equivalent
inclusion method to model the problem [see for example Christensen (1990); Schapery
(1991)]. It is expected that the results from other models are not expected to affect the
qualitative nature of the observations made here regarding the degradation of moduli (Fig.
3). In the next section, motivated by the observations made here, a simple three-dimensional
phenomenological constitutive model amenable for computational modeling is formulated
to study damage evolution. The proposed model has two functions that govern the degra
dation of the bulk and the shear moduli of the composite material while undergoing
damage. These functions can be determined readily from uniaxial experiments as a function
of the proposed internal damage variable.

3. PHENOMENOLOGICAL MODEL

3.1. Strain energy density
From our observations in the previous section, it is apparent that in response to

damage accumulation (dilatation), the bulk and the shear moduli are degraded to different
extents for a given amount of damage (see Fig. 3). These results suggest that we adopt a
strain energy function for the damaged material of the form

(4)

where UO and '1'0 are the volumetric and deviatoric parts of the strain energy functions of
the undamaged material and D is a generalized damage parameter. e and e are the
volumetric dilatation (a scalar) and deviatoric parts of the infinitesimal strain tensor 6,

(5a,b)

The phenomenological model for particulate composites undergoing damage is
developed based on the concepts introduced by Kachanov (1986), Krajcinovic and Lemaitre
(1987), Schapery (1987,1991), Simo (1987) and Simo and Ju (1987). The specific functional
form of 9 and h and as well as the choice of scalar internal variables CPp and CPs depend on
the damage mechanism and the deformation process itself. For simplicity, we assume the
damage functions g(cpp) and h(CPs) to be isotropic damage functions of scalar internal
variables Cpp and cp" respectively. For linearly elastic materials, the functions UO and '1'0 are
given by the standard expressions
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(6a,b)

where Ko and 110 are the bulk and shear moduli of the undamaged composite material. An
implicit assumption made in writing the functional form for the strain energy as shown in
(4) is that the composite behaves linearly elastically if it were to undergo no damage.

The stress tensor (j0 for the undamaged material is related to the strain tensor 8 through
Hooke's law for a linearly elastic material

(7)

The stress tensor (j for the damaged material for the strain energy function (4) can be
written in the form

(8)

The dilatational and deviatoric parts of the stress tensor are altered by the factors g
and h which were used to define the strain energy function W for the damaged material in
terms of the strain energy of the undamaged material.

3.2. Choice of internal variable
The specific choice of a physical parameter for the internal variable q> is made based

on our knowledge of the deformation behavior of the particulate composites discussed in
Sections 1 and 2. The usual assumption made regarding the damage process in particulate
composites is that the maximum strain (or a measure of it) attained by the material during
its deformation history controls the constitutive response [see for example Farris (1968);
Knauss et al. (1973); Schapery (1982); Gurtin and Francis (1981); Swanson and
Christensen (1983)]. This assumption was used in developing constitutive models and
appears to work well in the case of uniaxial loading. Schapery (1987, 1992) has outlined a
methodology based on potentials like strain energy to develop a constitutive model for
particulate composites undergoing damage under uniaxial straining and confining pressure.
This was then combined with results from a micromechanical model to study more gen
eralized strain states. Simo (1987) and Simo and Ju (1987) proposed to adopt the strain
energy ofthe undamaged material as a scalar measure of the maximum strain. Subsequently,
Govindjee and Simo (1992) have used the maximum stretch experienced by the material
during its deformation history to be the internal variable controlling the damage process.

In the present study, we propose a single scalar internal variable for the damage
parameter. The particulate composites of interest (polymeric, rubber) are nearly incom
pressible prior to any damage and the damage in the material due to deformation is
manifested in the form of volume dilatation. In most cases, it is 'also observed that the
response is nearly linearly elastic prior to the onset ofany damage or under large superposed
hydrostatic pressure [see Farris (1968)]. It appears natural to choose the volume dilatation
(a scalar non-dimensional variable) or the dilatational part of the strain energy of the
undamaged material [f! to be our measure ofdamage in three dimensions for the particulate
composites under consideration.

The volume dilatation 0 appears to be a natural choice for both q>p and q>s. In our
subsequent discussions, the single scalar internal variable q> will be used to denote damage
and we propose to use the maximum dilatation achieved during deformation to be the
controlling damage parameter,

q>m = max {0}.

3.3. Damage criterion
The constitutive model (8) is made complete with the damage condition

(9)

(10)

with 2(0, q>m) = 0 denoting a damage surface in the dilatation space. When the damage is
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taking place or remains the same, then 8 = °and when loading or unloading is taking
place within the damage surface, then 8 < 0. The damage criterion enforces the assumption
that the damage is completely controlled by the maximum dilatation cpm experienced by the
material during the deformation history. The evolution law for the internal variable of
damage is given by a rate equation

(11)

9 is the damage consistency parameter which is used to define loading/unloading
conditions for damage using the following Kuhn-Tucker relations [see Simo and Ju (1987)
for details]

9 ~ 0, 8 ~ 0, 89 = 0. (12a,b,c)

When damage accumulates (increases) further during loading, i.e. 8 = °then (12c)
implies that 9> 0, in which case the value of 9 is determined using (11). On the other hand
if 8 < 0, i.e. the current dilatation 0 is less than the internal variable qJm, then (12c) implies
that 9 = 0. This means that no additional damage takes place during loading or unloading
within the damage surface, i.e. when 8 < 0.

Since the mode of damage is dewetting (debonding) between the particles and the
matrix, both the bulk and the shear moduli K and fl of the damaged material would be
functions of the extent of debonding, i.e. volume dilatation. It is expected that the damage
functions 9 and h would be different since the degradation of the bulk and shear moduli
with debonding is not identical for a fixed damage level as seen in the previous section (see
Fig. 3). The functions 9 and h can be evaluated from the uniaxial response of the composite.
Using (8) for the case of uniaxial stress, i.e. 0"11 = 0",0"22 = 0"33 =°and denoting ell = e,

0" 0"
g(0) =-3C\ and h(0) = (3 C\)

Ko~ flo e-~

(13a,b)

The implicit assumptions made in arriving at the above relations are that the composite
prior to damage is not incompressible, i.e. Ko =I- OC! and the volume dilatation is available
either from dilatometer measurements or from measurement of transverse strains e22 and
e33'

3.4. Computational methodology
From (8), together with the choice of damage parameter shown in (9), one can derive

the three-dimensional algorithmic tangent moduli D

where

is the modulus tensor for the damaged material, i.e. O"ij = Cijkh/. g' and h' are derivatives
of the damage functions 9 (0) and h (0) with respect to the dilatation 0. Note that the
tangent moduli tensor Dijk/ is not symmetric and this asymmetry arises from the last term
in (14), where the damage function h is a function of 0 or Uo. If h were to be a function of
e or 'Po rather than 0, then the tangent moduli would be symmetric. The asymmetry in
tangent moduli results in additional computational effort to obtain the solution. If the
damage parameter S introduced by Schapery (1991) is used, the tangent moduli is always
symmetric, however, the current damage parameter qJm provides a damage criterion which
approximates that when S is used.
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The stiffness matrix K is formed at the element level using the appropriate small strain
B matrix and the tangent modulus for the element D (14)

(16)

where ne is the volume of the element. The solution is obtained by the Newton-Raphson
iterative procedure.

In modeling plane problems, the case of plane strain is enforced by setting 833 = 0, i.e.
the corresponding shape function derivatives in the B matrix are set to be zero. In the case
of plane stress, we compute the out-of-plane strain 833 by setting 0"33 = O. In particular, this
yields a relation e33 = - V(811 + 822) where ell and e22 are the in-plane normal strain com
ponents and with vgiven by

(17)

However the dilatation can be written as

(18)

In the case of plane strain, vis set to be zero. For plane stress at the end of each iteration,
the sum of the in-plane strain components is known, however the dilatation that would be
used is from the previous iteration and hence the computation of out-of-plane strain
component 8 33 (and the subsequent 0) will be inaccurate. By inspection of (17) and (18), it
is clear that (17) is a transcendental equation for v and can be evaluated using the Newton
Raphson method for finding roots. This reduction proved to be extremely efficient as was
seen from the quadratic convergence of the residual norm during computations. The stress
components are updated with the current modulus tensor C (15). The iterative procedure
is continued until the force and energy residual norms are below a certain set tolerance,
which in our case for the force norm is set at 10- 6

• The Kuhn-Tucker conditions (12) are
enforced such that damage does not accumulate during unloading and loading within the
damage surface (3 < 0). The algorithmic tangent moduli (14) is implemented in a modified
version of a displacement based finite element program FEAP [see Taylor (1977)].

3.5. Results
The proposed homogenized constitutive model (8) for a particulate composite under

going damage is illustrated through examples starting with the uniaxial response for a solid
propellant shown in Fig. 2. Using (l3a,b) with the stress-strain dilatation data shown in
Fig. 2, the damage functions 9 and h are determined and plotted as a function of the volume
dilatation in Fig. 4. The Young's modulus (Eo) and the Poisson's ratio (vo) are 8.25 MPa
and 0.499, respectively for the data shown in Fig. 2. During computations, for a given
dilatation, the functions 9 and h are obtained by applying cubic spline interpolation to the
data shown in Fig. 4.

Making use of the analytical results given in Section 2 (1)-(3), the damage function h
shown in Fig. 4 was used to assess the volume fraction of the total number of particles that
have undergone debonding under uniaxial tension. The computations indicate that the
onset of dewetting takes place at very small strains, at around 2%, and the total number
of particles that undergoes debonding increases linearly with increasing strain. For the data
shown in Fig. 2, our micromechanical model predicts about 40% of the total number of
particles to have undergone debonding at an axial strain of 30%.

The loading and unloading response of the material is simulated by periodically loading
and unloading a specimen under uniaxial tension. The specimen is loaded, unloaded and
reloaded at strains of e = 10%,20% and 29%. The corresponding stress-strain curves and
the corresponding dilatation are shown in Fig. 5. The stress-strain response and the
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Fig. 4. Normalized bulk (K) and shear (jJ.) moduli for the composite shown in Fig. 2 as a function

of volume dilatation.

dilatation curve follow the experimental curve shown in Fig. 2. During unloading, the
response is linear, with the material returning to the initial state with no permanent residual
deformation. Upon reloading, the loading path follows the linear unloading path, rejoins
the original stress-strain curve and continues to follow the stress-strain curve obtained for
monotonic loading as shown in Fig. 2. Thus, the response under uniaxial stress is completely
governed by the maximum strain attained during the deformation. This is consistent with
the experimental observations and has been modeled extensively [see for example Schapery
(1982)].

The response of a biaxial strip under plane stress, i.e. fixed or zero displacement in the
Xl direction and extension in the X 2 direction is shown in Fig. 6. This geometry was chosen
to model the biaxial strip specimen widely used to assess the constitutive properties of
particulate composites. The material exhibits a relatively softer response and increased
volume dilatation with strain in comparison to the response under uniaxial tension (see
Fig. 2). Such a response is consistent with experimental observations on biaxial strip
specimens [see Farris and Schapery (1973)].
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Fig. 5. Predicted loading (uniaxial tension) and unloading response for the composite shown in
Fig. 2. Both the stress and the dilatation are shown as a function of the strain.
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The effect of superposed hydrostatic pressure on the uniaxial response is investigated
by subjecting an axisymmetric bar to radial pressure. The stress-strain response and the
dilatational behavior under radial pressures ofp = 0, 0.1, 0.25, 0.5 and 2 MPa are shown
in Fig. 7. The pressures indicated are gage pressures. The linear region of the stress-strain
curve increases with increasing pressure and the rate of volume dilatation decreases with
increasing pressure. At relatively higher pressures, say 2 MPa, the composite exhibits nearly
linear behavior for the range of strains considered here. These observations are consistent
with experimental observations made by Farris (1968).

4. CONCLUSIONS AND DISCUSSION

A simple three-dimensional phenomenological constitutive model has been developed
to model particulate composites undergoing damage. The model is motivated by obser-
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Fig. 7. Predicted response of a specimen subjected to various superposed hydrostatic pressures.
Results (stress and dilatation as a function of strain) are shown for applied gage pressures, p = 0,

0.1, 0.25, 0.5 and 2 MPa.
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vations from micromechanics regarding the degradation of bulk and shear moduli in
response to damage accumulation through dewetting of reinforcing particles from the
matrix. The phenomenological model is based on two damage functions which are physically
related to the degradation of the moduli and the strain energy function of a linearly elastic
composite. The damage parameters are functions ofa single scalar internal variable, namely,
the volume dilatation. Such a choice for the internal variable formulation is particularly
applicable to extremely hard or rigid particles reinforcing a nearly incompressible matrix.
In polymeric composites such as solid propellants, damage is usually manifested in the
form of volume dilatation. The procedure to determine the two damage functions from the
uniaxial measurements for a particulate composite is outlined.

The examples in Section 3 utilizing the phenomenological constitutive model indicate
that the model is capable of capturing the essential experimental observations made on
nearly incompressible elastic particulate composites undergoing damage. We have assumed
the damage functions to be isotropic and dependent on a single internal variable. If
necessary, this assumption can be relaxed to include a different description for the damage
functions using the same methodology outlined in Section 3. Also, there are a number of
phenomena that are relevant to such elastomeric composites that have not been included
in the model. Time-dependent effects have been neglected and these can be accounted for
by including viscoelasticity in the present formulation. By modifying appropriate free energy
functions to include the viscous dissipation based on experimental data for relaxation, one
would be able to account for the hysteresis effects observed in experiments during unloading
[see for example Schapery (1982)]. Another aspect that may be important in modeling is
the inclusion ofgeometric non-linearities or in other words, large strain effects. These effects
can be accounted for by choosing an appropriate functional form for the free energy and
the corresponding homogenized response function such as the generalized neo-Hookean
model for the undamaged composite. In the case of finite strains, the choice for the scalar
internal damage variable would be the Jacobian ofthe deformation gradient, which provides
a measure for the volume change during deformation.
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